Metal-on-Metal Hips:

Device Mechanics and Failure Modes

Steven M. Kurtz, Ph.D., and Richard Underwood, Ph.D.

Exponent, Inc., and Drexel University

NIH R01 AR47904

Contracts: DePuy Orthopaedics, DJO, Invibio, Japan Medical Materials, Stelkast, Stryker, Ticona, Wright Medical Technology, Zimmer

Grants: Biomet, Ceramtec, Formae, Medtronic

Supported by the

Early Designs: 1930s-50s

Why Was MOM Abandoned in 1970s?

- Early success of the Charnley prosthesis
- High frictional torque, equatorial binding
- Carcinogenesis concerns
- Metal sensitivity concerns
- High infection rates
- Increased strain rates in periprosthetic trabecular bone

1990s: Gamma Air Polyethylene

By 1990's, MoP bearings dominated THA

But MoP in the 1990's had limitations:

- Gamma irradiation in air
- Oxidation
- Polyethylene wear debris
- Osteolysis
- Management of young, active patients

Low Wear from Some 1st Generation MoM Hips

(McMinn 2006)

Ring Metal on Metal Total Hip Replacement

Explanted after 23.5 years

Femoral head Wear Rate 0.43 µm/year

Acetabular cup wear Rate 0.35 µm/year

Tribology Theory and MoM Hips

- Theory developed for engine bearings applied to MOM hips in 1980s and 1990s
- Design goal is fluid film lubrication
 - Minimize head-liner clearance, roughness
 - Maximize head diameter
 - "Practically achievable" 1

Low Wear Rate in Hip Simulators

Laboratory testing suggests that MoM hips can achieve "very mild" mixed lubrication¹

Encouraging Results of "Metasul" MoM Hips

- ~ 300,000 Metasul hips implanted worldwide¹
- Low wear rates reported for revised hips²
- Low Co levels at 5 years³
- Encouraging revision rate at 5-11 years¹

¹Dorr, Long et al. "The Argument for the Use of Metasul as an Articulation Surface in Total Hip Replacement." CORR. 2004 429: 80 – 85 ²Reiker et al. "Development and Validation of a Second-Generation Metal-on-Metal Bearing." Journal of Arthroplasty 2004 19: 5 – 11 ³Brodner Bitzan et al. "Serum cobalt levels after metal-on-metal total hip arthroplasty." JBJS (Am) 2003. 85:2168–2173, 2003 ⁴Girard, Bocquet et al. "Metal-on-Metal Hip Arthroplasty in Patients Thirty Years of Age or Younger." JBJS (Am) 2010; 92:2419-2426

Reduced Risk of Dislocation and Impingement

Large diameter heads:

Increased head neck ratio

Increased range of motion

Increased "jump" distance

Lower risk of dislocation

¹Malik et al. "Impingement with Total Hip Replacement." JBJS(Am). 2007;89:1832-42

²Concept from Saraili et al. "Mathematical evaluation of jumping distance in total hip arthroplasty." Acta Orthopaedica 2009; 80: 277–282

Clinical Wear and Damage Mechanisms

Femoral Complications (Resurfacing)

- Femoral neck thinning
- Femoral loosening
- Femoral neck fractures

- Learning curve
- Patient selection

Elevated Wear (Resurfacing, THA)

(Langton 2011)

Twin revisions after 19 and 58 months

Evidence of wear on all components

Black deposits observed at taper interface during revision

In-vivo vs. In-vitro Wear

- Early revision reportedly linked to elevated wear and inadequate tribology
- Clinical problems are not predicted by simulator tests
- In-vivo wear orders of magnitude higher than in-vitro wear

Key Retrieval Issues

Articulating Surface Wear

- Wear Measurement
- Standardization at ASTM
- Edge Wear
- Contribution to in-vitro testing

Trunnion Tribo-Corrosion

- Wear Measurements
- Wear Mechanisms

Studies of Bearing Surface Wear

Study	No. of Heads	No. of Cups	Hip System
Underwood 2011	130	130	ASR & BHR
Witzleb 2008	8	2	BHR
Matthies 2011	120	120	BHR, ASR, Adept, Cormet, Durom
Morlock 2008	26	32	
Lord 2011	32	22	ASR
Ebrahzadeh 2011	185	121	BHR, ASR, C+, Cormet, Durom + others
Campbell 2006	66	39	BHR, C+, Cormet, McMinn
Langton 2011	35	35	ASR
Total	602	501	

Studies of Bearing Surface Wear

- Limited number of published studies
 - Only ~ 750 unique components
- No standardised measurement and analysis protocol
 - Cannot compare results between studies
 - Standardisation of measurements ASTM

(Hart 2011)

Wide Range of Wear Rates

Ebramzadeh et al, "Failure Modes of 433 Metal-on-Metal Hip Implants: How, Why, and Wear," Orthop Clin N Am 2011 42: 241–250 Hart et al, "Understanding Why MoM Hip Fail: The London Implant Retrieval Centre," Scientific Exhibit SE03 AAOS Annual Meeting 2011

Edge Wear

Why Simulators Don't Match the Retrievals?

Non Edge Worn Cup

Edge Worn Cup

Edge Wear – The pattern of wear observed in acetabular cups in which the maximum depth of the wear scar occurs at the cup rim and progressively deceases along a path from the cup rim to the pole

Elevated Wear Rate

Acetabular Position vs Edge Wear

Edge wear occurs at all positions

Three Causes of Edge Wear Impingement

(Matthies 2011)

(Underwood 2011a)

Micro Separation

(Underwood 2011b)

Edge loading

Matthies et al, "Retrieval analysis of 240 MoM hip components, comparing modular THR with hip resurfacing," JBJS[Br] 2011;93-B:307-14. Underwood et al, "What Are The mechanisms of Edge Loading In MoM Hips? A study of 400 Explanted Hip Components" 2011 ORS Annual Meeting Underwood et al, "Edge loading in metal-on-metal hips: low clearance is a new risk factor," Proc. IMechE Part H 2012 226(3) 217–226

Edge Loading

Schematic Diagram of Well Functioning Hip Schematic Diagram of Edge Loaded Hip

- Edge loading occurs when contact patch extends over cup rim
- Large increase in local contact pressure at cup rim
- Break down of boundary lubricant film leads to increased wear

Steep Inclination

Reduced Coverage

Reduced Clearance

Modular vs Resurfacing MoM Hips

Elevated revision rates reported for modular hips

- •UK NJR 2010 7.8% modular, 6.3% resurfacing revision rate at 5 years
- •Langton 2011 48.8% modular, 25% resurfacing revision rate at six years

Langton et al, "Accelerating failure rate of the ASR total hip Replacement," J Bone Joint Surg [Br] 2011;93-B:1011-16.

Goldberg observed "moderate to severe" taper corrosion in 42% of retrieved M-PE hips with dissimilar metals

Why is Taper Corrosion a MOM Issue?

Proposed theories:

- Langton 2011 "splayed open by mechanical forces"
- Gilbert 1993 "mechanically assisted crevice corrosion"
- •Jacobs 1998 Key variables: Metallurgical processing,

tolerances, surface processing, selection of materials

Summary: Bearing Mechanics

Tribology theory and in-vitro testing predicted low wear rates for MoM THA and resurfacings

Observations from certain retrieved MOM components do not support low wear hypothesis

Summary: MOM Device Failure Modes

- Resurfacing Femoral neck thinning, fracture
- Resurfacing and THA Elevated wear, edge wear
- THA Taper corrosion, "trunnionosis"

Questions?

skurtz@exponent.com